On Cantor Sets Defined by Generalized Continued Fractions 

Danielle Hedvig, Masha Gorodetski and Dr. Vladimir Baranovsky


We study a special class of generalized continuous fractions, both in real and complex settings, and show that in many cases, the set of numbers that can be represented by a continued fraction for that class form a Cantor set. Specifically, we study generalized continued fractions with a fixed absolute value but a variable sign of the coefficients. We ask the same question in the complex setting, allowing the coefficient’s argument to be a multiple of \pi/2. The numerical experiments that we conducted showed that in these settings the set of numbers formed by such continued fractions is a Cantor set for large values of the coefficient. Using an iterated function systems construction, we prove that this is the case, both in real and complex cases. Also, we noticed that in some regimes (for absolute values of the coefficient smaller than two), those sets form a peculiar fractal and formulate some questions and conjectures on its properties. We expect that some restrictions on the coefficients of generalized continued fractions should lead to the appearance of Cantorvals (closed bounded sets that have dense interior but contain no isolated points or intervals) or two-dimensional analogs of Cantorvals in the complex case. Our projects bring together topics from Number Theory, Dynamical Systems, Fractal Geometry, and Complex Analysis. We believe it can serve as a foundation for researchers to build upon in the future.


Session 3 – 4:30p.m. – 5:45p.m.

Room D – Sierra 2422

Leave a Reply

Your email address will not be published. Required fields are marked *